Kernel functions and parabolic limits for the heat equation
نویسندگان
چکیده
منابع مشابه
Math 742 Heat Equation and Kernel
Second-order parabolic equations are natural generalizations of the heat equation and we will study in this section the existence, uniqueness, and regularity of appropriately defined weak solutions. 1.1. Formulation of Weak Solutions. 1.1.1. Notations. In this note, we assume Ω to be an open, bounded domain in R n , and set Ω T = Ω × (0, T ]. We study the following initial/boundary-value proble...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملdeveloping a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولThe Nonlinear Heat Equation on Dense Graphs and Graph Limits
The continuum limit of coupled dynamical systems is an approximate procedure, by which the dynamical problem on a sequence of large graphs is replaced by an evolution integral equation on a continuous spatial domain. While this method has been widely used in the analysis of pattern formation in nonlocally coupled networks, its mathematical basis remained little understood. In this paper, we use...
متن کاملLimits of Solutions to a Parabolic Monge-Ampère Equation
In [10], we study solutions to the affine normal flow for an initial hypersurface L ⊂ R which is a convex, properly embedded, noncompact hypersurface. The method we used was to consider an exhausting sequence Li of smooth, strictly convex, compact hypersurfaces so that each Li is contained in the convex hull of Li+1 for each i, and so that Li → L locally uniformly. If the compact Li is the init...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1970
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1970-12658-1